Scholarpedia is supported by Brain Corporation
User:Jan A. Sanders/An introduction to Lie algebra cohomology/Lecture 3
Contents |
abstract
In this lecture we define the cohomology modules H^n(\mathfrak{g},\mathfrak{a})
Lifting the representation to the forms
definition
\mathfrak{g} is called an ideal in \mathfrak{l} if [\mathfrak{l},\mathfrak{g}]\subset \mathfrak{g}\ .
example
Let \mathfrak{g}=\ker d_1\ . Then for x\in\mathfrak{l} and y\in\mathfrak{g} one has d_1([x,y])=d_1(x)d_1(y)-d_1(y)d_1(x)=0 It follows that \mathfrak{g}=\ker d_1 is an ideal in \mathfrak{l}\ .
definition
Let \mathfrak{l} be a Lie algebra and \mathfrak{g} an ideal. Then \mathfrak{l}/\mathfrak{g} is a Lie algebra with the bracket [[x],[y]]=[[x,y]] where [x] denotes the equivalence class of x\ . This is well defined, since varying x and y with elements in \mathfrak{g} does not change the answer: [[x],[y]]=[[x+g_1,y+g_2]]=[[x,y]]+[[x,g_2]]+[[g_1,y]]+[[g_1,g_2]]=[[x,y]]
terminology
When \mathfrak{a} is a module and a representation space of \mathfrak{l}\ , one says that \mathfrak{a} is an \mathfrak{l}-module. If the representation is zero, \mathfrak{a} is a trivial \mathfrak{l}-module.
definition
Let \mathfrak{a} be an \mathfrak{l}-module. In order to give a general definition of a coboundary operator d^n , n\geq 0 \ , one defines first an induced representation on C^n (\mathfrak{g},\mathfrak{a}) as follows.
Let, for y\in\mathfrak{l}\ , (d_1^n(y)a^n)(x_1,\cdots,x_n)=d_1(y)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n a^n(x_1,\cdots, [y,x_i],\cdots,x_n). This is indeed a representation. Let y,z\in\mathfrak{l}\ . Then d_1^n(y)d_1^n(z)a^n(x_1,\cdots,x_n)= =d_1(y)d_1^n(z)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n d_1^n(z) a^n(x_1,\cdots, [y,x_i],\cdots,x_n) =d_1(y)d_1(z)a^n(x_1,\cdots,x_n)-\sum_{i=1}^n d_1(z) a^n(x_1,\cdots, [y,x_i],\cdots,x_n)\ : \[-\sum_{i=1}^n d_1(y) a^n(x_1,\cdots, [z,x_i],\cdots,x_n)+\sum_{ji}a^n(x_1,\cdots,[y,x_i],\cdots, [z,x_j],\cdots,x_n)+a^n(x_1,\cdots, [z,[y,x_i]],\cdots,x_n)\] It follows that d_1^n(y)d_1^n(z)a^n(x_1,\cdots,x_n)-d_1^n(z)d_1^n(y)a^n(x_1,\cdots,x_n)= =(d_1(y)d_1(z)-d_1(z)d_1(y))a^n(x_1,\cdots,x_n)+ \sum_{i=1}^n a^n(x_1,\cdots, [z,[y,x_i]],\cdots,x_n)- \sum_{i=1}^n a^n(x_1,\cdots, [y,[z,x_i]],\cdots,x_n) =d_1([y,z])a^n(x_1,\cdots,x_n)-\sum_{i=1}^n a^n(x_1,\cdots, [[y,z],x_i]],\cdots,x_n) =d_1^n([y,z])a^n(x_1,\cdots,x_n) or, d_2^n(y,z)=[d_1^n(y),d_1^n(z)]-d_1^n([y,z])=0\ .
remark
Remark that C^n(\mathfrak{g},\mathfrak{a}) is mapped into itself by d_1^n(x) for all x\in\mathfrak{l}\ .
Definition of the coboundary operator.
We now reformulate the definition of d^{i}, i=1,2,3 using the d_1^n\ . First we introduce the contraction operator \iota_1^n(y): C^n(\mathfrak{g},\mathfrak{a})\rightarrow C^{n-1}(\mathfrak{g},\mathfrak{a}) by ( \iota_1^n(y)a_n)(x_1,\cdots,x_{n-1})=a_n(y,x_1,\cdots,x_{n-1})\ .
Recall the following definitions of the coboundary operators.
- d a_0(x)=d_1(x)a_0\ .
- d^1 a_1(x,y)=d_1(x)a_1(y)-d_1(y)a_1(x)-a_1([x,y])=(d_1^1(x)a_1)(y)-d_1(y)\iota_1^1(x)a_1=(d_1^1(x)a_1)(y)-d \iota_1^1(x)a_1 (y)\ .
- d^2 a_2(x,y,z)=d_1(x)a_2(y,z)-d_1(y)a_2(x,z)+d_1(z)a_2(x,y)-a_2([x,y],z)-a_2(y,[x,z])+a_2(x,[y,z])\ :
- =(d_1^2(x)a_2)(y,z)-d_1^1(y)\iota_1^2(x)a_2(z)+d_1(z)\iota_1^1(y)\iota_1^2(x)a_2\ :
- =(d_1^2(x)a_2)(y,z)-d^1 \iota_1^2(x)a_2 (y,z)\ .
definition
This strongly suggests the following recursive definition:
- \iota_1^1(x)d=d_1(x)
- \iota_1^{n+1}(x)d^n+d^{n-1}\iota_1^n(x)=d_1^n(x),\quad n>0
lemma
Let y\in\mathfrak{l} and z\in\mathfrak{g}\ . Then
- \iota_1^n(z)d_1^n(y)-d_1^{n-1}(y)\iota_1^n(z)=-\iota_1^{n}([y,z]).
proof
Consider (\iota_1^n(z)d_1^{n}(y)-d_1^{n-1}(y)\iota_1^n(z))a_n(x_1,\cdots,x_{n-1}) = d_1^{n}(y)a_n(z,x_1,\cdots,x_{n-1})-d_1^{n-1}(y)\iota_1^n(z)a_n(x_1,\cdots,x_{n-1}) =d_1(y)a_n(z,x_1,\cdots,x_{n-1})-a_n([y,z],x_1,\cdots,x_{n-1})-\sum_{i=1}^{n-1}a_n(z,x_1,\cdots,[y,x_i],\cdots,x_n)\ : -d_1(y)a_n(z,x_1,\cdots,x_n)+\sum_{i=1}^{n-1}a_n(z,x_1,\cdots,[y,x_i],\cdots,x_{n-1}) =-a_n([y,z],x_1,\cdots,x_{n-1}) =-\iota_1^{n}([y,z])a_n(x_1,\cdots,x_{n-1})\quad\square\ .
lemma
Let y\in\mathfrak{l}\ . Then d_1^{n+1}(y)d^{n}=d^{n}d_1^{n}(y),\quad n\geq 0\ .
proof
For n=0 one has d_1^{1}(x)d a(y)-dd_1(x)a(y)=d_1(x)d_1(y)a-d_1([x,y])a-d_1(y)d_1(x)a=0\ . For n>0 one has, with z\in\mathfrak{g} and n>0\ , that \iota_1^{n+1}(z)(d_1^{n+1}(y)d^{n}-d^{n}d_1^{n}(y))= =-\iota_1^{n+1}([y,z])d^{n}+d_1^{n}(y)\iota_1^{n+1}(z)d^n-d_1^{n}(z)d_1^{n}(y)+d^{n-1}\iota_1^{n}(z)d_1^{n}(y) =-\iota_1^{n+1}([y,z])d^{n}+d_1^{n}(y)(d_1^{n}(z)-d^{n-1}\iota_1^n(z)-d_1^{n}(z)d_1^{n}(y)+d^{n-1}(d_1^{n-1}(y)\iota_1^n(z)-\iota_1^n([y,z])) =-d_1^{n}([y,z])+d_1^{n}(y)d_1^{n}(z)-d_1^{n}(z)d_1^{n}(y)+(d^{n-1}d_1^{n-1}(y)-d_1^{n}(y)d^{n-1})\iota_1^n(z) =d_2^n(y,z)+(d^{n-1}d_1^{n-1}(y)-d_1^{n}(y)d^{n-1})\iota_1^n(z) =(d^{n-1}d_1^{n-1}(y)-d_1^{n}(y)d^{n-1})\iota_1^n(z) This implies the statement of the lemma by induction.\square
theorem - coboundary operator
d^{\cdot} is a coboundary operator.
proof
One computes \iota_1^{n+2}(y)d^{n+1}d^{n}=d_1^{n+1}(y)d^{n}-d^{n}\iota_1^{n+1}(y)d^{n} =d^{n}d_1^{n}(y)-d^{n}(d_1^{n}(y)-d^{n-1}\iota_1^{n}(y)) =d^{n}d^{n-1}\iota_1^{n}(y). Again, since d^1d^0=0\ , it follows by induction that
- d^{n+1}d^{n}=0.
This shows that d^i, i\in\mathbb{N} is a coboundary operator.
proposition
d^n \omega_n(x_1,\cdots,x_{n+1})=\sum_{i=1}^{n+1} (-1)^{i-1} d_1(x_i) \omega_n(x_1,\cdots,\hat{x}_i,\cdots,x_{n+1}) +\sum_{i<j} (-1)^i\omega_n(x_1,\cdots,\hat{x}_i,\cdots,[x_i,x_j],\cdots,x_{n+1})
corollary
d^n maps C_{\wedge}^n(\mathfrak{g},\mathfrak{a}) to C_{\wedge}^{n+1}(\mathfrak{g},\mathfrak{a})\ .
Cohomology
Define Z^n(\mathfrak{g},\mathfrak{a})=\ker d^n\ , the space of cocycles, and B^n(\mathfrak{g},\mathfrak{a})=\mathrm{im\ }d^{n-1}\ , the space of coboundaries.
Since \mathrm{im\ }d^{n-1}\subset\ker d^{n}\ , one can define H^n(\mathfrak{g},\mathfrak{a})=Z^n(\mathfrak{g},\mathfrak{a})/B^n(\mathfrak{g},\mathfrak{a})\ , the n-cohomology module of \mathfrak{g} with values in \mathfrak{a}\ .
If a_n\in C^n(\mathfrak{g},\mathfrak{a})\ , the equivalence class in H^n(\mathfrak{g},\mathfrak{a}) is denoted by [a_n]\ . Elements in the zero equivalence class, the image of d^{n-1}\ , are called trivial.
remark
For n=0\ , H^0(\mathfrak{g},\mathfrak{a})=Z^0(\mathfrak{g},\mathfrak{a})=\ker d^0\ , that is, is consists of all elements in \mathfrak{a} which are \mathfrak{g}-invariant.
This indicates that computing the cohomology can be a formidable problem, since it contains for instance classical invariant theory.
Cohomology theory itself does not provide the answers, it just asks the right questions and removes the trivial answers.
theorem
H^n(\mathfrak{g},\mathfrak{a}), n>0 , is invariant under the action (by d_1^{n}) of \mathfrak{g}\ . So one could say that H^n(\mathfrak{g},\mathfrak{a}) is a trivial \mathfrak{g}-module and an \mathfrak{l}/\mathfrak{g}-module.
proof
Indeed, since d^n a_n=0\ , d_1^{n}(y)[a_n]=[d_1^{n}(y)a_n]=[\iota_1^{n+1}(y)d^{n}a_n+d^{n-1}\iota_1^{n}(y)a_n]=[0].\quad\square
lemma
If d^n a_n=0 and d_1^n(y)a_n=0\ , then, with b_{n-1}^y=\iota_1^n(y)a_n\ , one has d^{n-1}b_{n-1}^y=0\ .
corollary
If under these conditions H^{n-1}(\mathfrak{g},\mathfrak{a})=0\ , there exists c_{n-2}^y such that \iota_1^n(y)a_n=d^{n-2} c_{n-2}^y\ .
In the case n=2 this form is known as the Hamiltonian, and a_n is the symplectic form.
Since d_1(x)c^y=\iota^{1}(x)d c^y=\iota^{1}(x)b_1^y=b_1^y(x)=a_2(y,x)\ , one sees that c_0^y is invariant under y if a_2 is antisymmetric,
which is the usual assumption on symplectic forms.
moment map
Assume [a_2]\in H_\wedge(\mathfrak{g},\mathfrak{a}) and the existence of an index set I such that y_\iota, \iota\in I is the maximal set of linearly independent elements y_\iota\in\mathfrak{g} with \iota_1^2(y_\iota)a_2=0 and a_2(y_{\iota_1},y_{\iota_2})=0, \iota_1,\iota_2\in I\ .
Let \mathfrak{h}=\langle y^\iota\rangle_{\iota\in I}\ .
Then the map \mathfrak{h}\rightarrow\mathfrak{a}^I is called the moment(um) map.
Notice that d_1(y^{\iota_1})c^{y^{\iota_2}}=0,\iota_1,\iota_2\in I, by construction.
definition (conformally) symplectic
If a_2 is a symplectic form, an element y\in\mathfrak{g} is called conformally symplectic if d_1^2(y)a_2=c_1(y)a_2\ , where c_1 is a one form with values in a commutative ring.
If c_1(y) is invertible, y is called a scaling conformally symplectic form
If c_1(y)=0\ , y is called symplectic.
The commutator of two conformally symplectic elements is symplectic.
scaling lemma
Suppose there exists an element s\in\mathfrak{g} such that d_1^{n}(s)a_n=\lambda(a_n)a_n\ , with \lambda\in C^1(C^n(\mathfrak{g},\mathfrak{a}),R) and R the ring of the module \mathfrak{a}\ .
Then for a_n\in Z^n(\mathfrak{g},\mathfrak{a}) one has \lambda(a_n)a^n=d_1^{n}(s)a_n=d^{n-1}\iota_1^n(s)a_n\ , that is, if \lambda(a_n) is invertible, then a_n=d^{n-1}\lambda(a_n)^{-1}\iota_1^n(s)a_n\in B^n(\mathfrak{g},\mathfrak{a})\ .
In practice, this is very useful in computing cohomology, since it allows one to restrict the attention to those a_n\in Z^n(\mathfrak{g},\mathfrak{a}) which have a noninvertible \lambda(a_n)\ .
Notice that the argument does not work for s\in\mathfrak{l}\ .
the homotopy formula
If R equals \R or \mathbb{C} there is an explicit formula, the homotopy formula, to compute the preimage, at least on the span of the eigenforms.
Let d_1^{n}(s) a_n^\iota=\lambda_\iota a_n^\iota and let S be the span of all such a_n^\iota\in Z^n(\mathfrak{g},\mathfrak{a}) with \lambda_\iota\neq 0\ . Then if a_n\in S\ , one defines \tau^{s}a_n^\iota=\tau^{\lambda_\iota}a_n^\iota\ .
This defines \tau^{s}a_n by linearity. Let P a_n = \left.\int \tau^{s} a_n \frac{d\tau}{\tau}\right|_{\tau=1}\ .
Then for a_n\in S one has a_n=d^{n-1} \iota_1^n(s)P a_n\ .
Here the meaning of the integral is \int \frac{d\tau}{\tau}=\log(\tau) and with \lambda\neq 0\ , \int \tau^\lambda\frac{d\tau}{\tau}=\frac{1}{\lambda}\tau^\lambda.
proof
Let a_n=\sum_\iota \alpha_\iota a_n^\iota\ . Then d^{n-1} \iota_1^n(s)P a_n=d^{n-1} \iota_1^n(s)\sum_\iota \alpha_\iota P a_n^\iota\ : =d^{n-1} \iota_1^n(s)\sum_{\iota} \alpha_\iota \frac{1}{\lambda_\iota} a_n^\iota\ : =\sum_{\iota} \alpha_\iota a_\iota^n\ : = a_n
corollary
A scaling conformally symplectic form can be used to integrate the symplectic form.
pseudodifferential symbols - example of a closed 2-form
Let a_2(f\delta^n,g\delta^k)=\mathrm{tr}([\log(\delta),f\delta^n]g\delta^k)\ .