Scholarpedia is supported by Brain Corporation
User:Jan A. Sanders/An Introduction to Leibniz Algebra Cohomology/Lecture 4
Contents |
Construction of an extension
We now turn the question around. What is the situation if we have Leibniz algebras {\mathfrak{g}} (projective) and {\mathfrak{a}} (abelian), and [a^2]\in H^2({\mathfrak{g}},{\mathfrak{a}}) (or in \in H_{\wedge}^2({\mathfrak{g}},{\mathfrak{a}}) in the Lie algebra case)? If a Leibniz section (that is, a section which is a Leibniz algebra morphism) is possible, then one can view {\mathfrak{k}} as the direct sum of {\mathfrak{g}} and {\mathfrak{a}}\ . What is the situation if [a^2]\in H^2({\mathfrak{g}},{\mathfrak{a}}) is not zero? To see how one should define a Leibniz algebra structure on the sum of {\mathfrak{g}} and {\mathfrak{a}}\ , it pays to have a look at {\mathfrak{k}}\ . Every element in y\in{\mathfrak{k}} can be uniquely written as \sigma(x)+\iota(a)\ , x\in{\mathfrak{g}}, a\in{\mathfrak{a}}\ : take x=p(y) anda=\iota^{-1} (1-\sigma p)(y) \ . Let \phi:{\mathfrak{k}}\rightarrow {\mathfrak{a}}\oplus_R{\mathfrak{g}} be defined by \phi(\sigma(x))+\iota(a))=(a,x)\ . Then \phi([\sigma(x)+\iota(a_1),\sigma(y)+\iota(a_2)]=\phi([\sigma(x),\sigma(y)]+[\iota(a_1),\sigma(y)]+[\sigma(x),\iota(a_2)]) =\phi(\sigma([x,y])-\iota(a^2(x,y))+[\iota(a_1),\sigma(y)]+[\sigma(x),\iota(a_2)]) =({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y])
definition
One now defines for an arbitrary representation {d_\pm^{(0)}} and a^2\in C^2({\mathfrak{g}},{\mathfrak{a}})\ , [(a_1,x),(a_2,y)]= ({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y])
lemma
The new bracket [\cdot,\cdot]_{a^2} obeys the Jacobi identity as long as a^2\in Z^2({\mathfrak{g}},{\mathfrak{a}})\ .
proof
[[(a_1,x),(a_2,y)],(a_3.z)]-[(a_1,x),[(a_2,x),(a_3,z)]]+[(a_2,y),[(a_1,x),(a_3,y)]] =[({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y]),(a_3,z)] -[(a_1,x),({d_+^{(0)}}(y)a_3-{d_-^{(0)}}(z)a_2-a^2(y,z),[y,z])] +[(a_2,y),({d_+^{(0)}}(x)a_3-{d_-^{(0)}}(z)a_1-a^2(x,z),[x,z])] =({d_+^{(0)}}([x,y])a_3-{d_-^{(0)}}(z){d_+^{(0)}}(x)a_2+{d_-^{(0)}}(z){d_-^{(0)}}(y)a_1+{d_-^{(0)}}(z)a^2(x,y)-a^2([x,y],z),[[x,y],z]) -({d_+^{(0)}}(x){d_+^{(0)}}(y)a_3-{d_+^{(0)}}(x){d_-^{(0)}}(z)a_2-{d_+^{(0)}}(x)a^2(y,z)-{d_-^{(0)}}([y,z])a_1-a^2(x,[y,z],[x,[y,z]]) +({d_+^{(0)}}(y){d_+^{(0)}}(x)a_3-{d_+^{(0)}}(y){d_-^{(0)}}(z)a_1-{d_+^{(0)}}(y)a^2(x,z)-{d_-^{(0)}}([x,z])a_2-a^2(y,[x,z],[y,[x,z]]) =({d_-^{(0)}}([y,z])a_1-{d_+^{(0)}}(y){d_-^{(0)}}(z)a_1+{d_-^{(0)}}(z){d_-^{(0)}}(y)a_1 -{d_-^{(0)}}([x,z])a_2-{d_-^{(0)}}(z){d_+^{(0)}}(x)a_2+{d_+^{(0)}}(x){d_-^{(0)}}(z)a_2 +{d_+^{(0)}}([x,y])a_3-{d_+^{(0)}}(x){d_+^{(0)}}(y)a_3 +{d_+^{(0)}}(y){d_+^{(0)}}(x)a_3 +{d_+^{(0)}}(x)a^2(y,z)-{d_+^{(0)}}(y)a^2(x,z)+{d_-^{(0)}}(z)a^2(x,y) -a^2([x,y],z)-a^2(y,[x,z])+a^2(x,[y,z]),[[x,y],z] -[x,[y,z]] +[y,[x,z]]) =(d^{2}a^2(x,y,z),0) =(0,0).\square
antisymmetry
In the Lie algebra case one needs a^2\in Z_{\wedge}^2({\mathfrak{g}},{\mathfrak{a}}) in order to make the bracket antisymmetric.
definition
We denote the new Leibniz algebra by {\mathfrak{g}}{\oplus}_{a^2} {\mathfrak{a}}\ , the semidirect product of {\mathfrak{g}} and {\mathfrak{a}} induced by a^2 \in Z^2({\mathfrak{g}},{\mathfrak{a}})\ .
theorem
Let a^2 be as defined in lecture two. Then
- \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\ .
proof
Consider \mathfrak{a}\oplus_{a^2}\mathfrak{g}\ , where the representation d^{(0)} and the form a^2\in Z^2(\mathfrak{g},\mathfrak{a}) are constructed as in the second lecture. Let \phi: \mathfrak{a}\oplus_{a^2}\mathfrak{g}\rightarrow \mathfrak{k} be defined by \phi((a,x))=\iota(a)+\sigma(x)\ . Then \phi([(a_1,x_1),(a_2,x_2)])=\phi((d_+^{(0)}(x_1)a_2-d_-^{(0)}(x_2)a_1-a^2(x_1,x_2),[x_1,x_2]))\ : =\iota(d_+^{(0)}(x_1)a_2-d_-^{(0)}(x_2)a_1-a^2(x_1,x_2))+\sigma([x_1,x_2])\ : =[\sigma(x_1),\iota(a_2)]+[\iota(a_1),\sigma(x_2)]+[\sigma(x_1),\sigma(x_2)]\ : =[\iota(a_1)+\sigma(x_1),\iota(a_2)+\sigma(x_2)]\ : =[\phi((a_1,x_1)),\phi((a_2,x_2))].
Let now \psi:\mathfrak{k}\rightarrow \mathfrak{a}\oplus_{a^2}\mathfrak{g} be defined by \psi(x)=(\iota^{-1}(x-\sigma(p(x))),p(x))\ . Then \psi([x,y])=(\iota^{-1}([x,y]-\sigma(p([x,y]))),p([x,y]))\ : =(\iota^{-1}([x,y]-\sigma([p(x),p(y)])),[p(x),p(y)])\ : =(\iota^{-1}([x,y]-[\sigma(p(x)),\sigma(p(y))]-\iota a^2(p(x),p(y))),[p(x),p(y))])\ : =(\iota^{-1}([x-\sigma(p(x)),\sigma(p(y))]+[\sigma(p(x)),y-\sigma(p(y))]-\iota a^2(p(x),p(y))),[p(x),p(y))])\ : =(\iota^{-1}([\sigma(p(x)),y-\sigma(p(y))])+\iota^{-1}([x-\sigma(p(x),\sigma(p(y))])-a^2(p(x),p(y)),[p(x),p(y)])\ : =(d_+^{(0)}(p(x))\iota^{-1}(y-\sigma(p(y)))-d_-^{(0)}(p(y))\iota^{-1}(x-\sigma(p(x))-a^2(p(x),p(y)),[p(x),p(y)])\ : =[(\iota^{-1}(x-\sigma(p(x))),p(x)),(\iota^{-1}(y-\sigma(p(y))),p(y))]\ : =[\psi(x),\psi(y)] This implies that \phi and \psi are Leibniz algebra homomorphisms. Furthermore, \phi(\psi(x))=\phi((\iota^{-1}(x-\sigma(p(x))),p(x)))\ : = x-\sigma(p(x))+\sigma(p(x)\ : =x and \psi(\phi(a,x))=\psi(\iota(a)+\sigma(x))\ : =(\iota^{-1}(\iota(a)+\sigma(x)-\sigma(p(\iota(a)+\sigma(x))),\sigma(p(\iota(a)+\sigma(x)))\ : =(\iota^{-1}(\iota(a)+\sigma(x)-\sigma(x)),\sigma(x))\ : =(a,\sigma(x)) This \phi and \psi are Leibniz algebra isomorphisms. One has
- \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\quad\square
What if one now applies the construction in the second lecture to \mathfrak{a}\oplus_{a^2} \mathfrak{g}\ ? The maps \iota and p are given by \iota(a)=(a,0) p((a,x))=x From the definition of the bracket it follows that p is a Lie algebra homomorphism, for \iota this is trivial since \mathfrak{a} is abelian. One chooses a section \tilde{\sigma} as follows. \tilde{\sigma}(x)=(a^1(x),x),\quad a^1\in C^1(\mathfrak{g},\mathfrak{a}) Then \iota(\tilde{d}_+^{(0)}(x)a=[\tilde{\sigma}(x),\iota(a)]\ : =[(a^1(x),x),(a,0)]\ : =(d_+^{(0)}(x)a,0) and \iota(\tilde{d}_-^{(0)}(x)a=-[\iota(a),\tilde{\sigma}(x)]\ : =-[((a,0),a^1(x),x)]\ : =(d_-^{(0)}(x)a,0) It follows that \tilde{d}_\pm^{(0)}=d_\pm^{(0)}\ , which implies that the induced coboundary operators will be the same. Now \iota(\tilde{a}^2(x_1,x_2))=\tilde{\sigma}([x_1,x_2])-[\tilde{\sigma}(x_1),\tilde{\sigma}(x_2)]\ : =(a^1([x_1,x_2]),[x_1,x_2])-[(a^1(x_1),x_1),(a^1(x_2),x_2)]\ : =(a^1([x_1,x_2]),[x_1,x_2])-(d_+^{(0)}(x_1)a^1(x_2)-d_-^{(0)}(x_2)a^1(x_1)-a^2(x_1,x_2),[x_1,x_2])\ : =(a^2(x_1,x_2)-d^1 a^1(x_1,x_2),0) and this implies \tilde{a}^2=a^2-d^1 a^1\ . Furthermore
- \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\simeq \mathfrak{a}\oplus_{\tilde{a}^2} \mathfrak{g}
and if a^1\in Z^1(\mathfrak{g},\mathfrak{a}) one has
- \mathfrak{a}\oplus_{a^2} \mathfrak{g}= \mathfrak{a}\oplus_{\tilde{a}^2} \mathfrak{g}
theorem
To the short exact sequence of Leibniz algebras 0\rightarrow\mathfrak{a}\rightarrow\mathfrak{k}\rightarrow\mathfrak{g}\rightarrow 0 is associated an [a^2]\in H^2(\mathfrak{g},\mathfrak{a}) such that for any a^2\in[a^2] one has
- \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}