User:Jan A. Sanders/An Introduction to Leibniz Algebra Cohomology/Lecture 4

From Scholarpedia
Jump to: navigation, search

    Back to the third lecture

    On to the fifth lecture

    Contents

    Construction of an extension

    We now turn the question around. What is the situation if we have Leibniz algebras \({\mathfrak{g}}\) (projective) and \({\mathfrak{a}}\) (abelian), and \([a^2]\in H^2({\mathfrak{g}},{\mathfrak{a}})\) (or in \(\in H_{\wedge}^2({\mathfrak{g}},{\mathfrak{a}})\) in the Lie algebra case)? If a Leibniz section (that is, a section which is a Leibniz algebra morphism) is possible, then one can view \({\mathfrak{k}}\) as the direct sum of \({\mathfrak{g}}\) and \({\mathfrak{a}}\ .\) What is the situation if \([a^2]\in H^2({\mathfrak{g}},{\mathfrak{a}})\) is not zero? To see how one should define a Leibniz algebra structure on the sum of \({\mathfrak{g}}\) and \({\mathfrak{a}}\ ,\) it pays to have a look at \({\mathfrak{k}}\ .\) Every element in \(y\in{\mathfrak{k}}\) can be uniquely written as \(\sigma(x)+\iota(a)\ ,\) \(x\in{\mathfrak{g}}, a\in{\mathfrak{a}}\ :\) take \(x=p(y)\) and\(a=\iota^{-1} (1-\sigma p)(y) \ .\) Let \(\phi:{\mathfrak{k}}\rightarrow {\mathfrak{a}}\oplus_R{\mathfrak{g}}\) be defined by \(\phi(\sigma(x))+\iota(a))=(a,x)\ .\) Then \[\phi([\sigma(x)+\iota(a_1),\sigma(y)+\iota(a_2)]=\phi([\sigma(x),\sigma(y)]+[\iota(a_1),\sigma(y)]+[\sigma(x),\iota(a_2)])\] \[=\phi(\sigma([x,y])-\iota(a^2(x,y))+[\iota(a_1),\sigma(y)]+[\sigma(x),\iota(a_2)])\] \[=({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y])\]

    definition

    One now defines for an arbitrary representation \({d_\pm^{(0)}}\) and \(a^2\in C^2({\mathfrak{g}},{\mathfrak{a}})\ ,\) \[[(a_1,x),(a_2,y)]=\] \[({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y])\]

    lemma

    The new bracket \([\cdot,\cdot]_{a^2} \) obeys the Jacobi identity as long as \(a^2\in Z^2({\mathfrak{g}},{\mathfrak{a}})\ .\)

    proof

    \[[[(a_1,x),(a_2,y)],(a_3.z)]-[(a_1,x),[(a_2,x),(a_3,z)]]+[(a_2,y),[(a_1,x),(a_3,y)]]\] \[=[({d_+^{(0)}}(x)a_2-{d_-^{(0)}}(y)a_1-a^2(x,y),[x,y]),(a_3,z)]\] \[-[(a_1,x),({d_+^{(0)}}(y)a_3-{d_-^{(0)}}(z)a_2-a^2(y,z),[y,z])]\] \[+[(a_2,y),({d_+^{(0)}}(x)a_3-{d_-^{(0)}}(z)a_1-a^2(x,z),[x,z])]\] \[=({d_+^{(0)}}([x,y])a_3-{d_-^{(0)}}(z){d_+^{(0)}}(x)a_2+{d_-^{(0)}}(z){d_-^{(0)}}(y)a_1+{d_-^{(0)}}(z)a^2(x,y)-a^2([x,y],z),[[x,y],z])\] \[-({d_+^{(0)}}(x){d_+^{(0)}}(y)a_3-{d_+^{(0)}}(x){d_-^{(0)}}(z)a_2-{d_+^{(0)}}(x)a^2(y,z)-{d_-^{(0)}}([y,z])a_1-a^2(x,[y,z],[x,[y,z]])\] \[+({d_+^{(0)}}(y){d_+^{(0)}}(x)a_3-{d_+^{(0)}}(y){d_-^{(0)}}(z)a_1-{d_+^{(0)}}(y)a^2(x,z)-{d_-^{(0)}}([x,z])a_2-a^2(y,[x,z],[y,[x,z]])\] \[=({d_-^{(0)}}([y,z])a_1-{d_+^{(0)}}(y){d_-^{(0)}}(z)a_1+{d_-^{(0)}}(z){d_-^{(0)}}(y)a_1\] \[-{d_-^{(0)}}([x,z])a_2-{d_-^{(0)}}(z){d_+^{(0)}}(x)a_2+{d_+^{(0)}}(x){d_-^{(0)}}(z)a_2\] \[+{d_+^{(0)}}([x,y])a_3-{d_+^{(0)}}(x){d_+^{(0)}}(y)a_3 +{d_+^{(0)}}(y){d_+^{(0)}}(x)a_3\] \[+{d_+^{(0)}}(x)a^2(y,z)-{d_+^{(0)}}(y)a^2(x,z)+{d_-^{(0)}}(z)a^2(x,y)\] \[-a^2([x,y],z)-a^2(y,[x,z])+a^2(x,[y,z]),[[x,y],z] -[x,[y,z]] +[y,[x,z]])\] \[=(d^{2}a^2(x,y,z),0)\] \[=(0,0).\]\(\square\)

    antisymmetry

    In the Lie algebra case one needs \(a^2\in Z_{\wedge}^2({\mathfrak{g}},{\mathfrak{a}})\) in order to make the bracket antisymmetric.

    definition

    We denote the new Leibniz algebra by \({\mathfrak{g}}{\oplus}_{a^2} {\mathfrak{a}}\ ,\) the semidirect product of \({\mathfrak{g}}\) and \({\mathfrak{a}}\) induced by \(a^2 \in Z^2({\mathfrak{g}},{\mathfrak{a}})\ .\)

    theorem

    Let \(a^2\) be as defined in lecture two. Then

    \[ \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\ .\]

    proof

    Consider \(\mathfrak{a}\oplus_{a^2}\mathfrak{g}\ ,\) where the representation \(d^{(0)}\) and the form \(a^2\in Z^2(\mathfrak{g},\mathfrak{a})\) are constructed as in the second lecture. Let \( \phi: \mathfrak{a}\oplus_{a^2}\mathfrak{g}\rightarrow \mathfrak{k}\) be defined by \(\phi((a,x))=\iota(a)+\sigma(x)\ .\) Then \[ \phi([(a_1,x_1),(a_2,x_2)])=\phi((d_+^{(0)}(x_1)a_2-d_-^{(0)}(x_2)a_1-a^2(x_1,x_2),[x_1,x_2]))\ :\] \[=\iota(d_+^{(0)}(x_1)a_2-d_-^{(0)}(x_2)a_1-a^2(x_1,x_2))+\sigma([x_1,x_2])\ :\] \[=[\sigma(x_1),\iota(a_2)]+[\iota(a_1),\sigma(x_2)]+[\sigma(x_1),\sigma(x_2)]\ :\] \[=[\iota(a_1)+\sigma(x_1),\iota(a_2)+\sigma(x_2)]\ :\] \[=[\phi((a_1,x_1)),\phi((a_2,x_2))].\]

    Let now \(\psi:\mathfrak{k}\rightarrow \mathfrak{a}\oplus_{a^2}\mathfrak{g}\) be defined by \[\psi(x)=(\iota^{-1}(x-\sigma(p(x))),p(x))\ .\] Then \[\psi([x,y])=(\iota^{-1}([x,y]-\sigma(p([x,y]))),p([x,y]))\ :\] \[=(\iota^{-1}([x,y]-\sigma([p(x),p(y)])),[p(x),p(y)])\ :\] \[=(\iota^{-1}([x,y]-[\sigma(p(x)),\sigma(p(y))]-\iota a^2(p(x),p(y))),[p(x),p(y))])\ :\] \[=(\iota^{-1}([x-\sigma(p(x)),\sigma(p(y))]+[\sigma(p(x)),y-\sigma(p(y))]-\iota a^2(p(x),p(y))),[p(x),p(y))])\ :\] \[=(\iota^{-1}([\sigma(p(x)),y-\sigma(p(y))])+\iota^{-1}([x-\sigma(p(x),\sigma(p(y))])-a^2(p(x),p(y)),[p(x),p(y)])\ :\] \[=(d_+^{(0)}(p(x))\iota^{-1}(y-\sigma(p(y)))-d_-^{(0)}(p(y))\iota^{-1}(x-\sigma(p(x))-a^2(p(x),p(y)),[p(x),p(y)])\ :\] \[=[(\iota^{-1}(x-\sigma(p(x))),p(x)),(\iota^{-1}(y-\sigma(p(y))),p(y))]\ :\] \[=[\psi(x),\psi(y)]\] This implies that \(\phi\) and \(\psi\) are Leibniz algebra homomorphisms. Furthermore, \[ \phi(\psi(x))=\phi((\iota^{-1}(x-\sigma(p(x))),p(x)))\ :\] \[= x-\sigma(p(x))+\sigma(p(x)\ :\] \[ =x\] and \[\psi(\phi(a,x))=\psi(\iota(a)+\sigma(x))\ :\] \[=(\iota^{-1}(\iota(a)+\sigma(x)-\sigma(p(\iota(a)+\sigma(x))),\sigma(p(\iota(a)+\sigma(x)))\ :\] \[=(\iota^{-1}(\iota(a)+\sigma(x)-\sigma(x)),\sigma(x))\ :\] \[=(a,\sigma(x))\] This \(\phi\) and \(\psi\) are Leibniz algebra isomorphisms. One has

    \[ \mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\quad\square\]

    What if one now applies the construction in the second lecture to \(\mathfrak{a}\oplus_{a^2} \mathfrak{g}\ ?\) The maps \(\iota\) and \(p\) are given by \[\iota(a)=(a,0)\] \[p((a,x))=x\] From the definition of the bracket it follows that \(p\) is a Lie algebra homomorphism, for \(\iota\) this is trivial since \(\mathfrak{a}\) is abelian. One chooses a section \(\tilde{\sigma}\) as follows. \[\tilde{\sigma}(x)=(a^1(x),x),\quad a^1\in C^1(\mathfrak{g},\mathfrak{a})\] Then \[\iota(\tilde{d}_+^{(0)}(x)a=[\tilde{\sigma}(x),\iota(a)]\ :\] \[=[(a^1(x),x),(a,0)]\ :\] \[=(d_+^{(0)}(x)a,0)\] and \[\iota(\tilde{d}_-^{(0)}(x)a=-[\iota(a),\tilde{\sigma}(x)]\ :\] \[=-[((a,0),a^1(x),x)]\ :\] \[=(d_-^{(0)}(x)a,0)\] It follows that \(\tilde{d}_\pm^{(0)}=d_\pm^{(0)}\ ,\) which implies that the induced coboundary operators will be the same. Now \[\iota(\tilde{a}^2(x_1,x_2))=\tilde{\sigma}([x_1,x_2])-[\tilde{\sigma}(x_1),\tilde{\sigma}(x_2)]\ :\] \[=(a^1([x_1,x_2]),[x_1,x_2])-[(a^1(x_1),x_1),(a^1(x_2),x_2)]\ :\] \[=(a^1([x_1,x_2]),[x_1,x_2])-(d_+^{(0)}(x_1)a^1(x_2)-d_-^{(0)}(x_2)a^1(x_1)-a^2(x_1,x_2),[x_1,x_2])\ :\] \[=(a^2(x_1,x_2)-d^1 a^1(x_1,x_2),0)\] and this implies \[\tilde{a}^2=a^2-d^1 a^1\ .\] Furthermore

    \[\mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\simeq \mathfrak{a}\oplus_{\tilde{a}^2} \mathfrak{g}\]

    and if \(a^1\in Z^1(\mathfrak{g},\mathfrak{a})\) one has

    \[\mathfrak{a}\oplus_{a^2} \mathfrak{g}= \mathfrak{a}\oplus_{\tilde{a}^2} \mathfrak{g}\]

    theorem

    To the short exact sequence of Leibniz algebras \[0\rightarrow\mathfrak{a}\rightarrow\mathfrak{k}\rightarrow\mathfrak{g}\rightarrow 0\] is associated an \[[a^2]\in H^2(\mathfrak{g},\mathfrak{a})\] such that for any \(a^2\in[a^2]\) one has

    \[\mathfrak{k}\simeq \mathfrak{a}\oplus_{a^2} \mathfrak{g}\]

    On to the fifth lecture

    Back to the third lecture

    Personal tools
    Namespaces

    Variants
    Actions
    Navigation
    Focal areas
    Activity
    Tools