Help:Math

From Scholarpedia
Jump to: navigation, search

    Only a limited part of the full TeX language is supported; see below for details.

    Contents


    Syntax

    Math markup goes inside

    
    :<math>
    ...
    </math>
     
    

    The edit toolbar has a button for this. To number equations, write

    :<math> \label{label} 
    ...
    </math>
    

    and refer as \eqref{label}. For example, \[ \tag{1} x^7 \] is Eq.(1).

    Functions, symbols, special characters

    Accents/Diacritics

    \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \(\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!\)
    \check{a} \bar{a} \ddot{a} \dot{a} \(\check{a} \bar{a} \ddot{a} \dot{a}\,\!\)

    Standard functions

    \sin a \cos b \tan c \cot d \sec e \csc f \arcsin k \arccos l \(\sin a \cos b \tan c \cot d \sec e \csc f \arcsin k \arccos l\,\!\)
    \arctan m \sinh g \cosh h \tanh i \coth j \operatorname{sh}g \operatorname{argsh}k \operatorname{ch}h \(\arctan m \sinh g \cosh h \tanh i \coth j \operatorname{sh}g \operatorname{argsh}k \operatorname{ch}h\,\!\)
    \operatorname{argch}l \ \operatorname{th}i \ \operatorname{argth}m \ \lim n \limsup o \liminf p \min q \max r \(\operatorname{argch}l \ \operatorname{th}i \ \operatorname{argth}m \lim n \limsup o \liminf p \min q \max r\,\!\)
    \inf s \sup t \exp u \ln v \lg w \log x \log_{10} y \ker x \(\inf s \sup t \exp u \ln v \lg w \log x \log_{10} y \ker x\,\!\)
    \deg x \gcd x \Pr x \det x \hom x \arg x \dim x \(\deg x \gcd x \Pr x \det x \hom x \arg x \dim x\,\!\)

    Modular arithmetic

    s_k \equiv 0 \pmod{m} a \bmod b \(s_k \equiv 0 \pmod{m} a \bmod b\,\!\)

    Derivatives

    \nabla \partial x dx \dot x \ddot y \(\nabla \partial x dx \dot x \ddot y\,\!\)

    Sets

    \forall \exists \empty \emptyset \varnothing \(\forall \exists \empty \emptyset \varnothing\,\!\)
    \in \ni \not \in \notin \subset \subseteq \supset \supseteq \(\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!\)
    \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \(\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!\)
    \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \(\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!\)

    Operators

    + \oplus \bigoplus \pm \mp - \(+ \oplus \bigoplus \pm \mp - \,\!\)
    \times \otimes \bigotimes \cdot \circ \bullet \bigodot \(\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!\)
    \star * / \div \frac{1}{2} \(\star * / \div \frac{1}{2}\,\!\)

    Logic

    \land \wedge \bigwedge \bar{q} \to p \(\land \wedge \bigwedge \bar{q} \to p\,\!\)
    \lor \vee \bigvee \lnot \neg q \And \(\lor \vee \bigvee \lnot \neg q \And\,\!\)

    Root

    \sqrt{2} \sqrt[n]{x} \(\sqrt{2} \sqrt[n]{x}\,\!\)

    Relations

    \sim \approx \simeq \cong \dot= \(\sim \approx \simeq \cong \dot=\)
    \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto \(\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!\)

    Geometric

    \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ \(\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!\)

    Arrows

    \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow \(\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!\)
    \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow \(\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!\)
    \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \(\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!\)
    \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \(\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!\)

    Special

    \eth \S \P \% \dagger \ddagger \ldots \cdots \(\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!\)
    \smile \frown \wr \triangleleft \triangleright \infty \bot \top \(\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!\)
    \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \(\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!\)
    \ell \mho \Finv \Re \Im \wp \complement \diamondsuit \(\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!\)
    \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \(\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!\)

    Subscripts, superscripts, integrals

    Feature Syntax How it looks rendered
    HTML PNG
    Superscript a^2 \(a^2\) \(a^2 \,\!\)
    Subscript a_2 \(a_2\) \(a_2 \,\!\)
    Grouping a^{2+2} \(a^{2+2}\) \(a^{2+2}\,\!\)
    a_{i,j} \(a_{i,j}\) \(a_{i,j}\,\!\)
    Combining sub & super x_2^3 \(x_2^3\)
    {}_1^2\!\Omega_3^4 \({}_1^2\!\Omega_3^4\)
    Stacking \stackrel{\alpha}{\omega} \(\stackrel{\alpha}{\omega}\)
    Derivative (forced PNG) x', y, f', f\!   \(x', y'', f', f''\!\)
    Derivative (f in italics may overlap primes in HTML) x', y, f', f \(x', y'', f', f''\) \(x', y'', f', f''\!\)
    Derivative (wrong in HTML) x^\prime, y^{\prime\prime} \(x^\prime, y^{\prime\prime}\) \(x^\prime, y^{\prime\prime}\,\!\)
    Derivative (wrong in PNG) x\prime, y\prime\prime \(x\prime, y\prime\prime\) \(x\prime, y\prime\prime\,\!\)
    Derivative dots \dot{x}, \ddot{x} \(\dot{x}, \ddot{x}\)
    Underlines, overlines, vectors \hat a \ \bar b \ \vec c \(\hat a \ \bar b \ \vec c\)
    \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \(\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}\)
    \overline{g h i} \ \underline{j k l} \(\overline{g h i} \ \underline{j k l}\)
    Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} \(\overbrace{ 1+2+\cdots+100 }^{5050}\)
    Underbraces \underbrace{ a+b+\cdots+z }_{26} \(\underbrace{ a+b+\cdots+z }_{26}\)
    Sum \sum_{k=1}^N k^2 \(\sum_{k=1}^N k^2\)
    Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 \(\textstyle \sum_{k=1}^N k^2\)
    Product \prod_{i=1}^N x_i \(\prod_{i=1}^N x_i\)
    Product (force \textstyle) \textstyle \prod_{i=1}^N x_i \(\textstyle \prod_{i=1}^N x_i\)
    Coproduct \coprod_{i=1}^N x_i \(\coprod_{i=1}^N x_i\)
    Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i \(\textstyle \coprod_{i=1}^N x_i\)
    Limit \lim_{n \to \infty}x_n \(\lim_{n \to \infty}x_n\)
    Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n \(\textstyle \lim_{n \to \infty}x_n\)
    Integral \int_{-N}^{N} e^x\, dx \(\int_{-N}^{N} e^x\, dx\)
    Integral (force \textstyle) \textstyle \int_{-N}^{N} e^x\, dx \(\textstyle \int_{-N}^{N} e^x\, dx\)
    Double integral \iint_{D}^{W} \, dx\,dy \(\iint_{D}^{W} \, dx\,dy\)
    Triple integral \iiint_{E}^{V} \, dx\,dy\,dz \(\iiint_{E}^{V} \, dx\,dy\,dz\)
    Quadruple integral \iiiint_{F}^{U} \, dx\,dy\,dz\,dt \(\iiiint_{F}^{U} \, dx\,dy\,dz\,dt\)
    Path integral \oint_{C} x^3\, dx + 4y^2\, dy \(\oint_{C} x^3\, dx + 4y^2\, dy\)
    Intersections \bigcap_1^{n} p \(\bigcap_1^{n} p\)
    Unions \bigcup_1^{k} p \(\bigcup_1^{k} p\)

    Fractions, matrices, multilines

    Feature Syntax How it looks rendered
    Fractions \frac{2}{4}=0.5 \(\frac{2}{4}=0.5\)
    Large (nestled) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a \(\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\)
    Matrices
    \begin{matrix}
      x & y \\
      z & v 
    \end{matrix}
    \(\begin{matrix} x & y \\ z & v \end{matrix}\)
    \begin{vmatrix}
      x & y \\
      z & v 
    \end{vmatrix}
    \(\begin{vmatrix} x & y \\ z & v \end{vmatrix}\)
    \begin{Vmatrix}
      x & y \\
      z & v
    \end{Vmatrix}
    \(\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}\)
    \begin{bmatrix}
      0      & \cdots & 0      \\
      \vdots & \ddots & \vdots \\ 
      0      & \cdots & 0
    \end{bmatrix}
    \(\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} \)
    \begin{Bmatrix}
      x & y \\
      z & v
    \end{Bmatrix}
    \(\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}\)
    \begin{pmatrix}
      x & y \\
      z & v 
    \end{pmatrix}
    \(\begin{pmatrix} x & y \\ z & v \end{pmatrix}\)
    Case distinctions
    f(n) = 
    \begin{cases} 
      n/2,  & \mbox{if }n\mbox{ is even} \\
      3n+1, & \mbox{if }n\mbox{ is odd} 
    \end{cases}
    \(f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} \)
    Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
    \begin{array}{lcl}
     f(n+1) & = & (n+1)^2     \\
            & = & n^2 + 2n + 1 
    \end{array}
    \(\begin{array}{lll} f(n+1) & = & (n+1)^2 \\ & = & n^2 + 2n + 1 \end{array}\)
    Multiline equations (more)
    \begin{array}{lcr}
      f(x)   & = & x^2 + 2x + 1 \\
      f(n+1) & = & (n+1)^2 + 2(n+1) + 1     
    \end{array}
    \(\begin{array}{lcr} f(x) & = & x^2 + 2x + 1 \\ f(n+1) & = & (n+1)^2 + 2(n+1) + 1 \end{array}\)
    Breaking up a long expression so that it wraps when necessary
    
    <math>f(x) \,\!</math>
    <math>= \sum_{n=0}^\infty a_n x^n </math>
    <math>= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots</math>
    
    

    \(f(x) \,\!\)\(= \sum_{n=0}^\infty a_n x^n \)\(= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots\)

    Simultaneous equations
    \begin{cases}
        3 x + 5 y +   z \\
        7 x - 2 y + 4 z \\
       -6 x + 3 y + 2 z 
    \end{cases}
    \(\begin{cases} 3 x + 5 y + z \\ 7 x - 2 y + 4 z \\ -6 x + 3 y + 2 z \end{cases}\)

    Alphabets and typefaces

    Greek alphabet
    \Alpha \Beta \Gamma \Delta \Epsilon \Zeta
    \(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!\)
    \Eta \Theta \Iota \Kappa \Lambda \Mu
    \(\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!\)
    \Nu \Xi \Pi \Rho \Sigma \Tau
    \(\Nu \Xi \Pi \Rho \Sigma \Tau\,\!\)
    \Upsilon \Phi \Chi \Psi \Omega
    \(\Upsilon \Phi \Chi \Psi \Omega \,\!\)
    \alpha \beta \gamma \delta \epsilon \zeta
    \(\alpha \beta \gamma \delta \epsilon \zeta \,\!\)
    \eta \theta \iota \kappa \lambda \mu
    \(\eta \theta \iota \kappa \lambda \mu \,\!\)
    \nu \xi \pi \rho \sigma \tau
    \(\nu \xi \pi \rho \sigma \tau \,\!\)
    \upsilon \phi \chi \psi \omega
    \(\upsilon \phi \chi \psi \omega \,\!\)
    \varepsilon \digamma \vartheta \varkappa
    \(\varepsilon \digamma \vartheta \varkappa \,\!\)
    \varpi \varrho \varsigma \varphi
    \(\varpi \varrho \varsigma \varphi\,\!\)
    Blackboard Bold/Scripts
    \mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
    \(\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!\)
    \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
    \(\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!\)
    \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
    \(\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!\)
    \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
    \(\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!\)
    boldface (vectors)
    \mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
    \(\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!\)
    \mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
    \(\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!\)
    \mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
    \(\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!\)
    \mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
    \(\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!\)
    \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
    \(\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!\)
    \mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
    \(\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!\)
    \mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
    \(\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!\)
    \mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
    \(\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!\)
    \mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
    \(\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!\)
    \mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
    \(\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!\)
    Boldface (greek)
    \boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
    \(\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!\)
    \boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
    \(\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!\)
    \boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
    \(\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!\)
    \boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
    \(\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!\)
    \boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
    \(\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!\)
    \boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
    \(\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!\)
    \boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
    \(\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!\)
    \boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
    \(\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!\)
    \boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
    \(\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!\)
    \boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
    \(\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!\)
    Italics
    \mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
    \(\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!\)
    \mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
    \(\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!\)
    \mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
    \(\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!\)
    \mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
    \(\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!\)
    \mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
    \(\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!\)
    \mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
    \(\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!\)
    \mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
    \(\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!\)
    \mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
    \(\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!\)
    \mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
    \(\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!\)
    \mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
    \(\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!\)
    Roman typeface
    \mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
    \(\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!\)
    \mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
    \(\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!\)
    \mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
    \(\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!\)
    \mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
    \(\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!\)
    \mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
    \(\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!\)
    \mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
    \(\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!\)
    \mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
    \(\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!\)
    \mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
    \(\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!\)
    \mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
    \(\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!\)
    \mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
    \(\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!\)
    Fraktur typeface
    \mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
    \(\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!\)
    \mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
    \(\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!\)
    \mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
    \(\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!\)
    \mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
    \(\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!\)
    \mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
    \(\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!\)
    \mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
    \(\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!\)
    \mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
    \(\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!\)
    \mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
    \(\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!\)
    \mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
    \(\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!\)
    \mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
    \(\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!\)
    Calligraphy/Script
    \mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
    \(\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!\)
    \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
    \(\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!\)
    \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
    \(\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!\)
    \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
    \(\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!\)
    Hebrew
    \aleph \beth \gimel \daleth
    \(\aleph \beth \gimel \daleth\,\!\)
    Feature Syntax How it looks rendered
    non-italicised characters \mbox{abc} \(\mbox{abc}\) \(\mbox{abc} \,\!\)
    mixed italics (bad) \mbox{if} n \mbox{is even} \(\mbox{if} n \mbox{is even}\) \(\mbox{if} n \mbox{is even} \,\!\)
    mixed italics (good) \mbox{if }n\mbox{ is even} \(\mbox{if }n\mbox{ is even}\) \(\mbox{if }n\mbox{ is even} \,\!\)
    mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) \mbox{if}~n\ \mbox{is even} \(\mbox{if}~n\ \mbox{is even}\) \(\mbox{if}~n\ \mbox{is even} \,\!\)

    Parenthesizing big expressions, brackets, bars

    Feature Syntax How it looks rendered
    Bad ( \frac{1}{2} ) \(( \frac{1}{2} )\)
    Good \left ( \frac{1}{2} \right ) \(\left ( \frac{1}{2} \right )\)

    You can use various delimiters with \left and \right:

    Feature Syntax How it looks rendered
    Parentheses \left ( \frac{a}{b} \right ) \(\left ( \frac{a}{b} \right )\)
    Brackets \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack \(\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack\)
    Braces \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace \(\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace\)
    Angle brackets \left \langle \frac{a}{b} \right \rangle \(\left \langle \frac{a}{b} \right \rangle\)
    Bars and double bars \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| \(\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|\)
    Floor and ceiling functions: \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil \(\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil\)
    Slashes and backslashes \left / \frac{a}{b} \right \backslash \(\left / \frac{a}{b} \right \backslash\)
    Up, down and up-down arrows \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow \(\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow\)

    Delimiters can be mixed,
    as long as \left and \right match

    \left [ 0,1 \right )
    \left \langle \psi \right |

    \(\left [ 0,1 \right )\)
    \(\left \langle \psi \right |\)

    Use \left. and \right. if you don't
    want a delimiter to appear:
    \left . \frac{A}{B} \right \} \to X \(\left . \frac{A}{B} \right \} \to X\)
    Size of the delimiters \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]

    \(\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]\)

    \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle

    \(\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle\)

    \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| \(\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|\)
    \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil

    \(\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil\)

    \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow

    \(\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow\)

    \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow

    \(\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow\)

    \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash

    \(\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash\)

    Spacing

    Note that TeX handles most spacing automatically, but you may sometimes want manual control.

    Feature Syntax How it looks rendered
    double quad space a \qquad b \(a \qquad b\)
    quad space a \quad b \(a \quad b\)
    text space a\ b \(a\ b\)
    text space without PNG conversion a \mbox{ } b \(a \mbox{ } b\)
    large space a\;b \(a\;b\)
    medium space a\>b [not supported]
    small space a\,b \(a\,b\)
    no space ab \(ab\,\)
    small negative space a\!b \(a\!b\)

    Align with normal text flow

    Due to the default css

    img.tex { vertical-align: middle; }

    an inline expression like \(\int_{-N}^{N} e^x\, dx\) should look good.

    If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.

    Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.

    Color

    Equations can use color:

    • {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
    • \[{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}\]
    • x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
    • \[x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}\]

    See here for all named colours supported by LaTeX.

    Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors.

    Examples

    Quadratic Polynomial

    \(ax^2 + bx + c = 0\)
    
    <math>ax^2 + bx + c = 0</math>
    

    Quadratic Formula

    \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
    
    <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
    

    Tall Parentheses and Fractions

    \(2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)\)
    
    <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
    
    \(S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}\)
    
    <math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
    

    Integrals

    \(\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy\)
    
    <math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
    

    Summation

    \(\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}\)
    
    <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
    {3^m\left(m\,3^n+n\,3^m\right)}</math>
    

    Differential Equation

    \(u'' + p(x)u' + q(x)u=f(x),\quad x>a\)
    
    <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
    

    Complex numbers

    \(|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,\)
    
    <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,</math>
    

    Limits

    \(\lim_{z\rightarrow z_0} f(z)=f(z_0)\,\)
    
    <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)\,</math>
    

    Integral Equation

    \(\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR\)
    
    <math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
    \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
    D_n(R)}{\partial R}\right]\,dR</math>
    

    Example

    \(\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,\)
    
    <math>\phi_n(\kappa) = 
    0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,</math>
    

    Continuation and cases

    \(f(x) = \begin{cases}1 & -1 \le x < 0 \\
     \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}\)
    
    <math>f(x) = \begin{cases}1 & -1 \le x < 0 \\
    \frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x\le 1\end{cases}</math>
    

    Prefixed subscript

    \({}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,\)
    
     <math>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty
    \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,</math>
    

    Acknowledgement

    This page was modified from Wikipedia help page http://en.wikipedia.org/wiki/Help:Displaying_a_formula

    Bug reports

    Please, report bugs to the editor-in-chief.

    External links

    Personal tools
    Namespaces

    Variants
    Actions
    Navigation
    Focal areas
    Activity
    Tools