Dr. Richard FitzHugh
Maryland, U.S.A.
Featured Author: Richard FitzHugh
Richard (Dick) FitzHugh (b. March 30, 1922, in Concord, Massachusetts, d. November 21, 2007) studied biology at the University of Colorado and received his PhD. in Biophysics from Johns Hopkins University. Moving to the National Institutes of Health in Bethesda, MD, FitzHugh began working Dr. Stephen Kuffler and, later, Dr. Kenneth (Kacy) Cole, a collaboration that lasted until his retirement in 1985. (This picture was taken in 1984).
While simulating the Hodgkin-Huxley model on an analog computer, FitzHugh created one of the most influential models of excitable dynamics, the FitzHugh-Nagumo Model, which became a standard tool in computational neuroscience, cardiodynamics, reaction-diffusion systems, and many other areas of applied mathematics. Much of the current understanding of dynamic mechanisms in neuronal threshold phenomena is due to FitzHugh's pioneering research, and many consider him a father of mathematical neuroscience.
Scholarpedia article:
- Izhikevich E.M. and FitzHugh R. (2006) FitzHugh-Nagumo Model. Scholarpedia, p.3193
Contents |
Richard (Dick) FitzHugh
Biography
- 30 March 1922 Born Concord, Massachusetts
- 1948 B.A. in Biology, University of Colorado
- 1953 Ph.D. in Biophysics, Johns Hopkins University, Baltimore, MD.
- 1954-1955 Research in Laboratory with Stephen Kuffler, Johns Hopkins Medical School , Baltimore, MD.
- 1956-1985 Laboratory of Biophysics, initially under Dr. Kenneth (Kacy) Cole, National Institutes of Health, Bethesda, MD.
- 1960 Sabbatical at Technische Hochschule, Darmstadt, Germany, with Dr. Ulrich Franck
- 1985 Retired
- 21 November 2007 died.
Awards
- Summa cum Laude
- Phi Beta Kappa (University of Colorado, 1948)
Bibliography
- FitzHugh R. (1954) Azide and the effect of activity on frog nerve. J. Cell. Comp. Physiol. 44: l13-116
- FitzHugh R. (1954) Effects of azide and electrical polarization on refractory period in frog nerve. J. Cell. Comp. Physiol. 44: 117-140
- FitzHugh R. (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics 17:257-278
- Kuffler S.W., FitzHugh R. and H.B.Barlow (1957) Maintained activity in the cat's retina in light and darkness. J. Gen. Physiol. 40:638-702
- FitzHugh R. (1957) The statistical detection of threshold signals in the retina. J. Gen. Physiol. 40:925-948
- Barlow H.B., FitzHugh R., and Kuffler S.W. (l957) Dark adaptation, absolute threshold and Purkinje shift in single units of the cat's retina. J. Physiol. 137:327-337
- Barlow H.B., FitzHugh R., and Kuffler S.W. (1957) Change of organization in the receptive fields of the cat's retina during dark adaptation. J.Physiol. 137:338-354
- FitzHugh R. (1958) A Statistical Analyzer for Optic Nerve Messages. J.Gen.Physiol. 41:675-692
- FitzHugh R. and Antosiewicz H.A. (1959) Automatic computation of nerve excitation -- detailed corrections and additions. J. Soc. Indust. Appl. Math. 7:447-458
- FitzHugh R. (1960) Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J.Gen.Physiol. 43:867-896
- Dalton J.C. and FitzHugh R. (1960) Applicability of Hodgkin-Huxley model to experimental data from the giant axon of lobster. Science 131:1533-1534
- Franck U.F. und FitzHugh R. (l961) Periodische Elektrodenprozesse und ihre Beschreibung durch ein mathematisches Modell. Z.f. Elektrochemie 65:156-168
- FitzHugh R. (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophysical J. 1:445-466
- FitzHugh R. (1962) Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J. 2:11-21
- Chandler W.K., FitzHugh R., and Cole K.S. (1962) Theoretical stability properties of a space-clamped axon. Biophys. J. 2:105-127
- FitzHugh R. and Cole K.S. (1964) Theoretical potassium loss from squid axons as a function of temperature. Biophys. J. 4:257-265
- FitzHugh R. (1965) A kinetic model of the conductance changes in nerve membrane. J.C.C.P. 66 Suppl. 2 Part II: 111-118
- FitzHugh R. (1966) An electronic model of the nerve membrane for demonstration purposes. J. Appl. Physiol. 21:305-308
- FitzHugh R. (1966) Theoretical effect of temperature on threshold in the Hodgkin-Huxley nerve model. J. Gen. Physiol. 49:989-1005
- FitzHugh R. (1968) Motion picture of nerve impulse propagation using computer animation. J. Appl. Physiol. 25:628-630
- FitzHugh R. (1969) Mathematical models of excitation and propagation in nerve. Chapter 1 (pp. 1-85 in H.P. Schwan, ed. Biological Engineering, McGraw-Hill Book Co., N.Y.
- FitzHugh R. (1973) Dimensional analysis of nerve models. J.Theoret.Biol. 40:517-541
- FitzHugh R. and Cole K.S. (1973) Voltage and current clamp transients with dielectric loss. Biophys. J. 13:1125-1140
- FitzHugh R. and Cole K.S. (1974) Letter to the Editor. Dielectric loss transients. Biophvs. J. 14:625-626
- Adelman W.J. Jr. and FitzHugh R. (1975) Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space. Fed. Proc. 34:1322-1329.
- FitzHugh R. and Rapoport S.I. (1973) Appendixes I and II: Stress-strain properties of the elastic cylinder, and Length-tension properties of the sarcolemma in the intact fiber. Biophys.J. 13:30-36
- FitzHugh R. (1976) Anodal excitation in the Hodgkin-Huxley nerve model. Biophys. J. 16:209-226
- FitzHugh R. (1975) Nerve Membrane Model. FORTRAN programs to compute solutions of Hodgkin-Huxley equations. Magnetic tape distributed by National Technical Information Service, U.S. Dept. Commerce
- FitzHugh R. (1977) A model of optimal voluntary muscular control. J.Math.Biol. 4:203-236
- FitzHugh R. (1981) Nonlinear sinusoidal currents in the Hodgkin-Huxley model. pp. 25 - 35 in Adelman, W. J., ed. 1981 The Biophysical Approach to Excitable Systems, Plenum Press
- Rapoport S. I, FitzHugh R., Pettigrew K.D., Sundaram U. and Ohno K. (1982) Drug entry into and distribution within brain and cerebrospinal fluid: [14C]urea pharmacokinetics. Am. J. Physiol. 242:R339-R348.
- FitzHugh R. (1983) Sinusoidal voltage clamp of the Hodgkin-Huxley model. Biophys J. 42:11-16
- FitzHugh R. (l983) Statistical properties of the asymmetric random telegraph signal, with applications to single channel analysis. Math. Biosciences 64:75-89
- Ehrenstein G. and FitzHugh R. (1986) A channel model for development of the fertilization membrane in sea urchin eggs. pp. 421-430 in Ionic Channels in Cells and Model Systems, Ramon Latorre, ed., Plenum Publishing Corporation